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FAST ALGORITHMS FOR PARTIAL DIFFERENTIAL
EQUATIONS ON ADVANCED COMPUTERS

Final Report AFOSR 86-0061

Thomas A. Manteuffel

INTRODUCTION.

This report will cover four areas of research. The first area is an analysis of
preconditionings. We have examined the properties that a preccnditioning must
possess in order to yield an iterative method with convergence properties indepen-
dent of the discretization parameters. The second area is an attempt to provide
a framework for the construction of conjugate gradient methods. The third area
of research is the analysis of the equations governing the transport of neutrally
charged particles and the construction of iterative methods for the solution of dis-
crete transport equations. The final area of research is supraconvergence which
deals with accurately approximating the solution of partial differential equations on
highly irregular meshes.

The first topic is very theoretical in nature but will have important implications
to the practical choice of preconditionings. The second area is aiso theoretical in
nature, but leads immediately to the development of new iterative methods. The
third area builds on the analysis of the continuous operators to yield insight into
the behavior of discrete approximations. The final goal of this third project is the
development of efficient numerical methods for the solution of discrete transport
equations on massively parallel machines. The final area of research will lead to
more efficient solution of differential equations on irregular meshes. "

1. ANALYSIS OF PRECONDITIONINGS

Uniformly elliptic partial differential equations in R', denoted here by

A -_ f,

yield discrete linear systems of .. : ,,!,.

with condition number

where h is a mesh parameter. 1', r' , eiethods for the solution of the discrete
equations yield error bounds after -z -. ,s of the type

K
k I "'
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where k = Cond(Ah) or Cond(Ah) 2 depending on the implementation.
Preconditioning can be viewed as a linear rearrangement of the equations in

an attempt to reduce the condition number. The discrete equation is replaced by

Ch Ahu =Ch f

where Ch is a nonsingular linear process. Classical splitting methods may be viewed
from this perspective. For example, S.O.R. with optimal parameter (applied to
appropriate systems) yields a preconditioning for which

Cond(ChAh) = O(h-1 ).

Likewise, irnconp!ete factorization techniques yield preconditionings with this same
property. Although of the same asymptotic order as S.O.R., incomplete factoriza-
tions perform better on a wide class of problems because the absolute magnitude
of the condition number is smaller.

It was shown by D'Yakanov 'DY1', DY21 and Gunn rGU1l that for a special
class of self-adjoint uniformly elliptic operators it is possible to construct Bh suc'
that

Cond(B.1Ah) = 0(1),

that is, the condition number of the preconditioned system is independent of the
mesh parameter. Here Bh is the discretization of a 'nearby' uniformly elliptic op-
erator, B. The error in the original problem can be reduced by a given factor in a
fixed multiple of the work required to solve systems of the type

Bhu = f.

The multiple is independent of the mesh but depends upon how 'close' A is to B.
This result was exploited by Concus and Golub [CO1] and Widlund [WIll who

noticed that if A and B live on a rectangle and if B is separable, then the equation
involving Bh can be solved using fast direct methods (cf. !SW1I). Practice has
shown that these methods are of little use unless A is very 'close' to a separable B.
The difficulty is that while Cond( B, A, ) is independent of the mesh, for reasonable
values of the mesh parameter h the magnitude of the condition is larger than that
for other splittings, for exampc, i:-c,),,:p;ete factorization.

Multigrid may Llso be viex,.sl as a preconditioning where Ch represents the . .
process of cycling through the gr, I For a wide class of problems, Cond(ChAh) is ".&
not only independent of h, but vvry smrall. 5

•d J2
Results. The methods, of D'Yakanov and Gunn and multigrid methods satisfy the
same asymptotic bounds on the condition number. Yet, in practice, their perfor-

mance can differ greatly. An attemt. to develop a theory that encompasses these
r-thndq and yie!d- more precise measurernents of the practicality of precondition- '1
ing was presented in a report by Faber, Manteuffel, and Parter 'FA4]. This work .!b;ly Codes
developed the concept of equivalent operators on Hilbert spaces. Two operators A ,a i :d j ur

Special
2 i:-
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and B are said to be equivalent in norm on the subset D of the Hilbert space H if
the ratio

j!Axj!/IBxjI

is bounded above and below for every element xED. Equivalence in norm yields
Cond(AB-') bounded on an appropriate domain. For preconditioned systems it
is more appropriate to examine Cond(B-'A) or to show that A and B-1 are
equivalent in norm. An important result in this report is that if Ah and Bh are a
sequence of discrete approximations to A and B, then Cond(Bh 'Ah) is bounded
independent of h only if Cond(B- 'A) is bounded. Thus, the construction of pre-
conditionings independent of the mesh must be based upon equivalent operators.

This report was the basis for two papers [MA5], [FA5] (attached). In the first,
uniformly elliptic operators were examined. It was shown that if Q is a sufficiently
smooth region in R 2 , then any two uniformly elliptic operators with the same ho-
mogeneous boundary conditions are equivalent on a dense subset of L2 (Q). One
interesting corollary of this result is that if Ah and B are finite element discretiza-
tions of uniformly elliptic operators using elements smooth enough to be in the
domain of A and B, then Ah and B,. are uniformly equivalent; that is, they are
equivalent and the bounds are independent of h. This implies that Cond(Ah B,)
will be independent of the mesh. This will lead to bounds on the residual r, = Ae,
of the type

<r, K k 1) IIr!!

where k = Cond(Ah B,)).

To obtain similar bounds on the error e, it is necessary to examine Cond
(B- 'A). It was discovered that Cond(B- 'A) is bounded if and only if A* and B*,
the L 2-adjoints of A and B, have the same homogeneous boundary conditions. It is
easy to construct examples of operators A and B where Cond(AB - ') is bounded
while Cond(B- 'A) is not and conversely. This discovery negates the conventional
wisdom of choosing B to be the leading part of A with the same boundary condi-
tions.

The second paper, [FA5'. extends the theory in IFA4] to cover the situation
where A and B are operators fror'" a Ililbert space 14 to another Hilbert space "V.
This paper establishes in a more ,'-xral context the same results as MA5]. Finally,
this paper examines the uniform ,', ;2 valence of finite element approximations. Sim-
ilar results are established for s: .. , apdard finite difference approximations when
2 is a rectangle.

These two papers also exar: j,;ivalence of weak forms of the operators
A and B. 11crc, however, thc !. :. :::: .!aces the L,-norm in the definition of
equivalence. It was discovered t : B - 'A) (the H, condition number) and
CH,(AB-') are both bounded if ir,i ,rlv if A and B have Dirichlet boundary
conditions on exactly the same port iots of the boundary of fQ. Similar results hold
for their discrete counterparts.
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Future Research. These results imply that under very general hypotheses precon-
ditioning the discrete approximation of a uniformly elliptic operator by the discrete
approximation of any other uniformly elliptic operator with the appropriate bound-
ary conditions will yield a condition number independent of the mesh. This result
demonstrates that a mesh independent bound alone is not sufficient to yield a good
preconditioning. A measure of the distance between operators has been suggested
[FA5] but is of little practical value. Conversely, these results imply that pre-
conditioning strategies that yield mesh independent condition numbers most likely
approximate the inverse of some operator equivalent to A.

A long list of interesting questions arises, some of them theoretical and some
with more practical application. The above results depend upon H 2 regularity (or
H, regularity for the weak forms) and uniform ellipticity. One theoretical question
is whether these results hold in the absence of regularity. Another question is how
to choose the operator B so that B- 'A has its spectrum in the right-half plane, a
potentially important issue for nonself-adjoint operators. This would determine the
type of iteration implemented and whether

k = Cond(BA,)Ah) or Cond(B['Ah)

in the error bound above.
Of more practical interest would be the development of a measure of the dis-

tance between two elliptic operators that could be computed or at least well ap-
proximated a priori. This would yield a good approximation to Cond(Bh 'Ah) and
allow one to accurately predict the work required to solve the discrete system.

Even more fruitful would be the examination of multigrid methods in this con-
text. Recent work by Parter [PAl] on singularly perturbed Helmholtz type equa-
tions has shown that in some cases one can achieve a mesh independent condition
number using partial multigrid methods. These methods keep the coarsest grid
very fine and never completely solve the coarsest mesh. This leads one to believe
that similar methods may be applied to other problems. The marriage of multigrid
with iterative techniques may guarantee a mesh independent condition number for
a much wider class of problems than those for which multigrid has been applied to
date.

2. CONJU(;-\I-: (;RADIENT METHODS.

Since the introduction of tho ,-,''? ,gate gradient method in 1952 by Hentenes
and Stiefel [HE1] it has become a ar method for the solution of symmetric pos-
itive definite linear systems. Dtir:-' w 1:1, .36 years since its introduction, many vari-
ants have been developed includi:, • #, preconditioned conji:gate gradient method
and the conjugate residual method

Efficient generalizations of th,, , gate gradient method to nonself-adjoint
linear systems, other than forming h, normal equations, were sought but never
found. In the early 80's work by Iabor and Nianteuffel laid to rest this question
by establishing both necessary and sufficient conditions for the existence of a short
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term conjugate gradient method [FAll, [FA2]. In brief, given a linear system A
and a preconditioning C it is possible to construct a three term conjugate gradient
method optimal in the innerproduct norm JxJ1H = (Bx,x) if and only if i) CA
has fewer than three distinct eigenvalues, or ii) CA is B-normal (1). The second
criteria is an extension of the standard definition of normality. Here normality is
measured with respect to the inner product (B., .). The criteria is equivalent to the
expression

BA = aB +3A*B

where A* is the standard adjoint. This work showed that the conjugate gradient
method could be extended, but only to a relatively small class of nonself-adjoint
linear systems.

Results. The paper by Ashby, Manteuffel and Saylor [AS1] (attached) is an at-
tempt to use the theory developed in [FAl] and [FA2] to provide a structure that
includes all conjugate gradient methods. This structure not only shows how many
variants of the conjugate gradient method are really different implementations of
the same method, but also unambiguously determines the set of linear systems for
which the method is applicable. Finally, this theory leads to the easy development
of new methods. In fact, this paper introduces several new variants of the conjugate
gradient method.

Future Research. The same principles have been applied to a much broader class
of methods known as Projection Methods which include the conjugate gradient
methods and are applicable to nonsclf-adjoint linear systems. Recent work by Jou-
bert and Manteuffel [JO1] has established the beginnings of a theoretical framework
for these methods. Future research will include expanding these results and exam-
ining several new methods exposed by this theory.

3. MULTIGRID METHODS FOR TRANSPORT THEORY

Mathematical models of radiation transport in optically dense materials are a
fundamental part of many weapons codes. Similar problems arise in nuclear reactor
design and analysis, satellite electronics shielding, radiation detector design and
dosimetry, radiation therapy planning, and radiation effects on materials. Although
two and three dimensional anisotropic models are of great interest, even the one
dimensional model of transport in slab geometry presents formidable difficulties.
This is because the equations governing transport become nearly singular on a
subspace of large dimension in optically dense material, that is, when the mean
free path between particle collisiorns Is small compared to the physical dimensions.
This is further complicated in tha, th subspace contains the functions of lowest
frequency in space.

To be more precise, consider the equation governing neutron transport with
isotropic scattering in a slab geometry,

5 u (, x) dit + q.

5



Here, u is the particle density at spatial position x moving in direction characterized
by angle 0, where p = cos 0, and q is the source term. This equation is to hold for
xe(-a, a) with boundary conditions

u(,-a) =b,(p) 0 < pt <
(,,a) b= b(p) -1 < A < 0.

Here, -y is a positive constant with - < 1. The space-like parameter x is scaled
in terms of the number of mean free paths. Problems of interest generally involve
-y= 1 and very large a.

The problem can be reformulated by defining the operators

and a
H, (9 +1,

yielding
H. u =yLu + q.

Inverting the transport operator H,, yields

H- ',Lu + H, q.

Applying L to this equation and making the substitutions

€=Lu, f =LH-jq,

yields

0 (ntI,'y) = f.

The operator K = (LH- K:) can he shown to be a compact self-adjoint oper-
ator on L 2 (-a,a) with tfK,' < I cf W121). Notice that applying L eliminates
the dependence on the angle u. T',e , ,jtiation above can be viewed as an integral
equation of the second kind on L ,z. 2).

For very large a, a singular .all:e decomposition of K yields singular vectors
that are asymptotic to Fourier v!,-r,-.

j .... ") k odd
Vk- 1  ''K k even

where k, k
t7, = kr -O(-), for - << 1,

a a
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and singular values

Ork k (k7r 2 +0 k)

where 1/4+ 1 <k <1/4 + [FA3] (attached).

It is often the case that the solution can be well described by frequencies for
which - << 1. This implies that the operator I-K is nearly singular on frequencies
of interest.

The discrete analogue of this equation retains many of these properties and
introduces greater difficulties. The operators H,, and L are discretized on a (x, A)
grid. A popular technique, known as the SN or discrete ordinates method [CA1],
is to approximate H, by a difference formla in space and to approximate L by
a quadrature formula in /p. Thus, the discrete Kh can be applied by computing
(H ,,)- 'h for a discrete set of angles p, and applying a quadrature rule to form
KhOh.*

In the past, these problems were solved by the simple splitting iteration known
as the source iteration,

For large a, this iteration will converge very slowly. Recently, an observation that
slow convergence occurs in problems that are basically diffusive has led to an algo-
rithm called Diffusion Synthetic Acceleration (DSA) (cf. Larson [LAI], [L01]),

(I - Gh ) ¢'h' = (Kh - Gh ) i, + fh ,

where Gh = T - ' and Th is the discrete form of the diffusion operator

1 u
Tu - ~ + u

3 (x 2

with u satisfying appropriate boundary conditions. The DSA iteration can be re-
arranged to yield

Oh,' (Th - 1)- (T, K, - 1)€0' + (Th - I)- Thf

Thus, the iteration requires only the soiution of a two-point boundary value problem
and application of the operator K at each step.

Results. Recent work by Faber and fanteuffel [FA3] (attached) includes an anal-
ysis of the singular values and sirg' ar vectors of the operator K in the limit of
large a. These results are used to -i "at the DSA iteration is successful because
the first few singular vectors and ,alues of the selfadjoint compact operator
K are well approximated by the fir>' few -Iigular vectors and singular values of the
compact operator G. Put in this pvr[pecti.ve. (I - G) is a good preconditioning for
(I- K). Further, simple iterative methods can be used to accelerate convergence of
the DSA iteration. In fact, numerical experiments show that a conjugate gradient
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iteration with DSA as a preconditioner can reduce the overall work by a factor of
three even in the most simple cases.

The DSA algorithm is extremely effective for problems with isotropic or mildly
anisotropic scattering, but it is ineffective for problems with highly anisotropic
scattering, such as charged particle problems [MO1]. Furthermore, certain practical
difficulties often arise in applying the DSA method with high-order-accurate spatial
differencing schemes. Specifically, stability considerations require that the diffusion
operator used in the DSA scheme be derived directly from the spatially-differenced
SN equations, and non-standard forms of the diffusion equation that are very costly
to solve can be obtained [ALli.

In principal, multigrid methods are well suited to the solution of integral equa-
tions of the second kind. Because K is compact, for any E > 0 all but a finite number
of the singular values of K are less than E. Thus, I - K looks like the identity plus
a finite rank operator. In addition, the lowest frequency singular vectors are those
associated with the largest singular values of K. Potentially, these vectors could be
well approximated on a coarse grid.

For large a, however, all frequencies of interest may be associated with singular
values of K very ,lose to unity. This difficulty is compounded in forming the discrete
analogue. If the spatial mesh size h is chosen fine enough to accurately describe the
frequencies of interest, it may still be many mean free paths wide. For example, in
applications in radiative transport, a may be on the order of 106 and the number of
mesh points may be 10'. Then h is on the order of 10' mean free paths wide. This
yields a discrete equation in which well over half of the singular values of Kh are
very near unity and, because of the discretization error, the smallest singular values
of Kh are well away from unity. Thus, even if the lowest half of the frequencies
are resolved on a coarser grid, the effective condition number of I - Kh due to the
remaining singular values is extremely large.

Simple source iteration is not adequate for eliminating the high-frequency er-
rors that cannot be resolved on a coarse mesh. Certain block relaxation techniques
have recently been developed [BO I that effectively attenuate high-frequency errors
regardless of the size of h. Furthermore, they have demonstrated that these re-
laxation schemes are effective re,,ardless of the anisotropy of the scattering. Thus
multigrid methods are more ger ,, I plicable than the DSA method.

Recently, we have developed t 7,r",,xation scheme on the (X,1) grid that corre-
sponds to line relaxation in A -i --,r:ahle shift [MA61. We have shown that this
yields a multigrid smoothing rat ....' I '; on the relevant singular vectors. Moreover,
after relaxation the error is nearsi w:,-pvndent of .t. Thus, a coarse grid correction
need not involve it. More prec1.o,,v. an effective coarse grid error correction equa-
tion can be found using the obser',a' ,, that errors that remain after relaxation
are nearly independent of g. A , :, based on these observations is currently
being implemented to prove its !, ., :ws. The scheme has been adapted to both
upwind difference approximatiorn ,i ", More complicated linear discontinuous
difference schemes.

Future Research. Most importantly, the scheme can be generalized to anisotropic
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scattering and to higher dimensions. For isotropic scattering, shifted line relaxation
in Au requires solving diagnonal block matrices perturbed by a rank one operator.
This can be solved effectively by capacitance matrix methods (cf. [BU1). In the
anisotropic case, the same relaxation scheme involves solving a simple block system
perturbed by a small number of rank one operators. Although slightly more compli-
cated, these may also be solved by capacitance matrix methods. In two dimensions,
line relaxation in ;z becomes plane relaxation in two angle parameters ( ,

Again these involve only simple block matrices plus low rank perturbations.
The algorithm is simple and inherently parallel. First, the relaxation scheme is

local in space. Also, if a Jacobi-like scheme is used, all lines can be relaxed simul-
taneously. If a Gauss-Siedel-type scheme is used where parallelism can be achieved
by using a zebra-like ordering, every other line can be relaxed simultaneously. In
addition, the coarse grids are essentially conventional diffusion equations which can
be handled by standard parallel multigrid algorithms.

The ultimate goal of this project is the production of software for the solution
of these problems. The successful algorithms will be implemented in two forms.
One will be designed for the Cray X, IP and directed toward production problems
at LANL. The second will be coded for the Connection Machine (CM2).

4. SUPRACONVERGENCE.

The classical approach to proving order of accuracy of difference schemes for
differential equations is to examine the truncation error. If the difference scheme is
stable then the order of accuracy is bounded by the order of the truncation error.
Unfortunately, on highly irregular meshes the truncation error associated with many
difference schemes is of lower order. For example, the second-divided difference has
second-order truncation error on a uniform mesh, but only first-order truncation
error on highly irregular meshes.

Much work has been done to alleviate this apparent disadvantage of irregular
meshes. One approach is to assume Lnat the mesh satisfies some smooth mesh
function. Another approach is to use more complicated difference schemes, for
example, operator implicit schemes.

Recent work by Manteuffel and White [MA1J, [MA21 and Kreiss, Manteuffel,
Swartz, Wendroff and White KRi hows that for many standard difference schemes
the error is actually second-order arc,'rate despite first-order truncation error. More
precisely, consider the simple ey.,'

together with appropriate boii',:. .,:.,''tions. Let D be the second divided dif-
ference operator on the grid fu,'' . consider the discrete equation

Ilj f.

The associated error equations rar b)e written
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where e is the error and t is the truncation error. For irregular meshes, =t 0(6)
where 6 is the maximum mesh size. We know that

Ile'!,,, = D-'t D <''D-" t,

Since 'D- is bounded independently of 6, we may conclude that ''e::, =0(6)
as well. However, the inequality above is unnecessarily crude. It can actually be
shown that 0(P) despite the fact that 0(6). This phenomena has
been labeled supraconvergence KR1'.

It is clear that the standard stability/consistency proof is insufficient to detect
supraconvergence. New tools have been developed that have led to the discovery
that many schemes for ordinary differential equations and partial differential equa-
tions possess this property on highly irregular meshes. One important tool is to
write the differential equatiot. as a first-order system of equations using auxiliary
unknowns, discretize the first-order system with simple difference schemes and then
algebraically eliminate the auxiliary variables. This process, if done correctly, yields
a compact-as-possible difference scheme on the original equation. Since the solution
to the reduced equations is algebraically identical to the solution of the first-order
system, it inherits any properties that the first-order system possesses.

Results. The theory of supraconvergence has been applied to higher-order ordi-
nary differential equations with surprising results. It is quite simple to write a
higher-order equation as a first order system and to then discretize this system us-
ing a second order accurate difference scheme. In [MA31 (attached), a calculus of
difference operators is introduced. Auxiliary operators are constructed that allow
for easy reduction of the discrete system to a discrete compact-as-possible system
for the original equation. A more detailed paper [MA4] which is near completion
shows that this process is essentially unique. The process yields second-order ac-
curate difference schemes for any order ODE. The truncation error, however, is
not second order on irregular meshes. In fact, for say a fourth order equation, the
truncation error is 0(6-2), not only inconsistant but increasing as 6 becomes small.

Boundary conditions for partial differential equations become especially trans-
parent in the context of first-order systems. The algebraic reduction of the first-
order system yields correct boundary conditions for the original equation. This im-
portant aspect of the research will havP implications for choosing difference schemes
to link composite grids.

Future Research. These same tools have produced results for partial differential
equations. On tensor product meshes the extension is easy [MA2]. However, on
more complicated meshes the problem is difficult.

A recent report [LE11 develops a c(ass of compact-as-possible difference schemes
for parabolic equations on time lines, h,1t irrtgular spacial mesh. The class possesses
second-order accuracy despite first-order truincation errors. This report also includes
results on hyperbolic equations. We -how that a class of conservative difference
schemes are first-order accurate on irregular meshes despite inconsistent truncation
error. These results are extended to the nonlinear wave equation.
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The more compelling question of supraconvergence for elliptic equations on ir-
regular meshes remains open. Current research that also involves Andrew B. White,
Jr., in Los Alamos National Laboratory, Max Gunzberger at Carnegie-Mellon Uni-
versity and David Levermore of the University of Arizona is focusing on 9-point
schemes on logically rectangular meshes and variable point schemes on triangular
meshes. The main idea is to define auxiliary unknowns that are not necessarily
associated with the nodes of the mesh, to form two different inner product spaces,
one that includes the original unknowns and another that includes the auxiliary
unknowns, and to determine the adjoints of the difference schemes in the respective
inner products. If the truncation error can be conveniently decomposed into por-
tions in the range and the null space of the adjoint, then the truncation error can be
written as a product of the first-order system times terms of possibly higher-order
plus terms in the null space. In this way schemes can be analyzed to see if they
possess supraconvergence.
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